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Abstract—In this paper, we present a new method for the study
of a discrete random variable whose probability distribution has
a finite support. The approach is based on the introduction of a
transform of the probability density function, named γ-transform,
which better suits the finite nature of the random variable than the
traditional probability generating function. In particular, in addition
to the transformation/anti-transformation pair, a simple formula is
presented for computing the factorial moments of a random variable
directly from the γ-transform of its probability density function.
Moreover, it is shown how the γ-transform can be determined from
the nature of the combinatorial problem under study thanks to its
physical meaning. Examples and applications to estimation problems
relevant for computer science are provided, in which the simple
construction of a γ-transform gives immediate access to the complete
characterization of the underlying probability distribution (density
function and moments).

Keywords—Discrete probability, factorial moments, transforms,
combinatorial analysis, estimation

I. INTRODUCTION

SEVERAL modelling problems relevant for performance
evaluation of information retrieval and database manage-

ment systems [1]–[7], [9], [10], [12]–[16], [18]–[21], [23],
[24] imply the study of a discrete and finite random variable.
Although such problems may allow a simple determination
of the expected value of the random variable involved, the
probability density function is usually difficult to compute and
handle for the evaluation of higher-order moments. As a matter
of fact, even very simple problems yield complex probability
distributions, involving alternating-sign summations with bino-
mial coefficients, owing to their relationship with the principle
of inclusion and exclusion [22]. Furthermore, the determination
of the moments from such distributions is not straightforward;
even the evaluation of the variance may result in a challenging
task.

In general, a common method for the study of a (non
negative) discrete random variable X consists in using the
probability generating function, defined as

G(z) = E[zX ] =
∑

x≥0

zx f(x) (1)

where f(x) is the probability density function (mass function)
of X , and which can also be regarded as a sort of z-transform
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of the function f(·). Using standard techniques, G(z) can
be formally derived from the nature of the problem under
study (e.g., see Appendix D). Then, f(x) and all the factorial
moments of X can be computed from G(z) thanks to:

f(x) = [zx]G(z) (2)
E[Xr] = G(r)(1) (3)

where the notations [xm]A and xm stand for the coefficient of
xm in A and for m-th falling factorial power of x, respectively.

Notice that equation (3) can easily be derived from the
expression of the Taylor (McLaurin) series expansion of the
r-th derivative of G:

G(r)(z) =
∑

i≥0

G(r+i)(0)
i!

zi (4)

and owing to the fact that f(x) = G(x)(0)/x!.
Although the probability generating function approach is a

very general methodology, we put forward the claim that it
might not be the most convenient approach when dealing with
a random variable having a distribution with finite support, that
is which takes values only in a finite set and, thus, has only
a finite number of nonnull moments. We would rather explore
the possibility that a methodology based on a finite Newton
series [17] —involving finite summations and differences—
could be more appropriate than the above one based on a
Taylor expansion —involving derivatives and formally infinite
summations. Supporting such a claim has been the main
motivation of this work, which will illustrate the practical
consequences that arise from its assertion.

Aimed at fulfilling this aim, our alternative approach is
based on the introduction in Section II of a new transform,
called γ-transform, that we defined in [14] and that satisfies
the above mentioned “finiteness” requirements. The adoption
of the γ-transform as finite calculus’s answer to the probability
generating function is the subject of Section III: owing to
a combinatorial identity demonstrated in Sec. II, we will
show how the new transform allows a fast determination of
all the factorial moments of a discrete and finite random
variable; moreover, the physical meaning of the new trans-
form is explained, which will allow a direct derivation of its
expression in the context of a given combinatorial problem;
finally, relationships between G(z) and the γ-transform are dis-
cussed. Examples and outstanding applications are presented in
Sections IV and V, respectively. Conclusions will eventually
be found in Section VI, whereas a case study involving the
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comparison of the γ-transform with alternative approaches can
be found in the Appendix.

II. PRELIMINARIES

In this section, we introduce the definition of γ-transform
for a generic function f(·) along with some fundamental
combinatorial identities involving it.

A. The gamma-transform

Let f(·) be a fixed function defined in {0, 1, . . . , n}, then
its γ-transform is defined in {0, 1, . . . , n} by:

γ(y) =
n∑

x=0

(
y

x

)

(
n

x

) f(x) (5)

B. Anti-transformation formula

The corresponding inversion formula is given by:

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

)
γ(x− j) (6)

and can be demonstrated as follows. It can be observed from
(5) that γ(y) is a polynomial function of degree n in y and,
thus, it can be expressed as a finite Newton series:

γ(y) =
n∑

x=0

(
y

x

)
∆x γ(0) (7)

Comparing (5) with (7) yields:

f(x) =
(

n

x

)
∆x γ(0) (8)

From Eq. (7), thanks to the properties of Newton series, we
can derive:

∆r γ(y) =
n∑

x=0

(
y

x− r

)
∆x γ(0) (9)

Hence, Eq. (6) can easily be obtained from (8) when expliciting
the x-th difference using (9).

In order to support our claim, it can be noticed how (9) can
actually represent the finite calculus’s counterpart of (4).

C. A combinatorial identity

A fundamental identity involving the γ-transform is the
subject of the next Theorem.

Theorem 1: If f(·) is a fixed function defined in
{0, 1, . . . , n}, then the following combinatorial identity holds:

n∑
x=0

xr f(x) = nr
r∑

i=0

(−1)i

(
r

i

)
γ(n− i) (10)

where γ(·) is the γ-transform of f(·).

Proof: Owing to the definition of r-th difference, the
summation in the right-hand side of (10) is ∆r γ(n−r). Hence,
thanks to (9), the right-hand side of (10) can be rewritten as:

nr ∆r γ(n− r)

=
n∑

x=0

nr

(
n− r

x− r

)
∆x γ(0)

=
n∑

x=0

xr

(
n

x

)
∆x γ(0) (11)

The final expression (11) equals the left-hand side of (10),
thanks to Eq. (8).

III. PROBABILISTIC INTERPRETATION

In this section, we bring to light the role played by the γ-
transform when f(·) represents the probability density function
of a finite and discrete random variable.

A. Evaluation of the moments

Let X be a discrete random variable with values in
{0, 1, . . . , n} and probability density function f(x). All the
moments of X can be computed from the γ-transform of f(·)
as stated by the following Corollary of Theorem 1.

Corollary 1: Given a discrete random variable X with
values in {0, 1, . . . , n}, its r-th factorial moment is provided
by:

E[Xr] = nr
r∑

i=0

(−1)i

(
r

i

)
γ(n− i) (12)

where γ(·) is the gamma-transform of the probability density
function of X .

Proof: It immediately follows from the definition of
expected value and Theorem 1.

Obviously, all the standard moments can be computed from
(12), thanks to:

E[Xr] =
r∑

s=0

{
r

s

}
E[Xs]

where
{

r
s

}
is a Stirling number of the second kind. For

instance, this entails:

E[X] = n [1− γ(n− 1)] (13)
σ2

X = n2
[
γ(n− 2)− γ2(n− 1)

]

+ n [γ(n− 1)− γ(n− 2)] (14)

which are really simple formulae.

B. Physical meaning

An important physical meaning can be given to the γ-
transform of the probability density function of a discrete and
finite random variable, as stated by the following Theorem.

Theorem 2: Let X be a random variable, with values in
{0, 1, . . . , n} and probability density function f(x), which
can be regarded as the number of successes occurring in an
experiment composed of a set N of n indistinguishable trials,
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effected as if the successful trials were randomly selected in
N . Let Y ⊆ N be a subset of trials fixed before the experiment
and let Pr[Y] be the probability that the experiment be effected
as if the successes could only be selected from Y rather than
from the whole N . Then it can be shown that:

Pr[Y] = γ(y)

where γ(·) is the γ-transform of the probability density func-
tion of X and y is the cardinality of the set Y .

Proof: Since in general the experiment can provide
any number X ∈ {0, 1, . . . , n} of successes, Pr[Y] can be
determined by means of the total probability Theorem as
follows:

Pr[Y] =
n∑

x=0

Pr[Y|X = x] Pr[X = x]

Since all the trials are indistinguishable and, thus,
(
m
x

)
is the

number of ways of choosing the x successes in a set of m
trials, we have:

Pr[Y] =
n∑

x=0

(
y

x

)

(
n

x

)f(x)

Moreover, also the inversion formula (6) can be proved with
only probabilistic arguments, as shown in the following. Let
Pr[X ′] be the probability that the successful trials only be
selected in the set X ′, then as a consequence of the principle
of inclusion and exclusion we have:

Pr[X = x]

=
∑
X⊆N
|X|=x


Pr[X ]−

∑
X′⊆X

|X′|=x−1

Pr[X ′] + · · ·

· · ·+ (−1)x−1
∑
X′⊆X
|X′|=1

Pr[X ′] + (−1)x Pr[Ø]




=
∑
X⊆N
|X|=x

x∑

j=0

(−1)j
∑
J⊆X
|J|=j

Pr[X \ J ] (15)

Owing to the physical meaning of γ(·), the probability Pr[X \
J ] is exactly γ(x−j). Hence, thanks to the indistinguishability
of trials (summations reduce to counts of equal quantities), it
can easily be verified that (15) equals the right-hand side of
(6).

C. Relationship with G(z)

The following relationship between the γ-transform and the
probability generating function G(z) can also be shown:

G(z) =
n∑

j=0

(
n

j

)
zj(1− z)n−j γ(j) (16)

In order to prove it, it is sufficient to show that the density
function (6) can be derived from (16) as f(x) = [zx]G(z).
By means of the binomial Theorem and with simple manipu-
lations, Eq. (16) can be rewritten as:

G(z) =
n∑

i=0

zi

(
n

i

) i∑

j=0

(−1)i−j

(
i

j

)
γ(j)

which evidences the [zi]G(z) term.
An inverse relationship can be derived as follows. Since

γ(y) is a non-decreasing function (with γ(0) = f(0) and
γ(n) = 1) and since from (16) we have:

n∑

j=0

(
n

j

)
γ(j) =

n∑

j=0

(
n

j

)
γ(n− j) = 2nG(1/2)

where also G(1/2) is usually a function of n, letting

g(x) = ∆x [2nG(1/2)] (0)

we can write:

γ(y) =
{

g(y) if g(n) = 1
g(n− y) if g(0) = 1 .

Moreover, it can also be shown that the probability gener-
ating function approach can be derived as a limit of the γ-
transform theory when the discrete random variable involved
is not limited. For instance, consider the γ-transform definition
(5): since (

y

x

)

(
n

x

) =
x−1∏

i=0

y/n− i/n

1− i/n

we can let n, y →∞ (maintaining constant the ratio y/n = z)
obtaining:

lim
n,y→∞

γ(y) = G(z)

owing to definition (1). Also other formulae concerning G(z)
can be obtained from the corresponding ones concerning γ(y)
by taking the same limit. This is the final argument in favor of
our initial claim. Formal similarities between the approaches
based on the probability generating function and on the γ-
transform can be eventually appreciated in Table I.

IV. EXAMPLES

Examples of application of the γ-transform approach are
provided in this Section. Its use is shown here in evaluating
the factorial moments of a random variable with well-known
distributions.

A. Uniform distribution

Let X be uniformly distributed in {0, 1, . . . , n}:

f(x) =
1

n + 1
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TABLE I
A SUMMARY COMPARISON BETWEEN THE APPROACHES BASED ON G(z) AND γ(y).

probability generating function γ-transform

X discrete and infinite X discrete and finite

G(z) =
∑

x≥0
zx f(x) γ(y) =

∑n

x=0

(
y
x

)/(
n
x

)
f(x)

f(x) = 1
x!

G(x)(0) f(x) =
(

n
x

)
∆x γ(0)

E[Xr] = G(r)(1) E[Xr] = n r ∆r γ(n− r)

The γ-transform of the density function can be evaluated as:

γ(y) =
1

n + 1

n∑
x=0

(
y

x

)

(
n

x

)

=
1

n + 1− y

owing to identity (5.33) of [17].
Applying Corollary 1 to compute the factorial moments, we

obtain:

E[Xr] = nr
r∑

i=0

(−1)i

(
r

i

)
1

i + 1

=
nr

r + 1

as identity (5.41) of [17] can be used in the last step.

B. Binomial distribution

If we consider a random variable X following a binomial
distribution:

f(x) =
(

n

x

)
pxqn−x

(with p + q = 1), we can easily obtain the γ-transform as:

γ(y) =
n∑

x=0

(
y

x

)
pxqn−x

= qn−y

thanks to the binomial Theorem.
Applying Corollary 1 we easily obtain:

E[Xr] = nr
r∑

i=0

(
r

i

)
(−q)i

= nr pr

Notice how the γ-transform could also be directly derived from
its physical meaning in a simple way, as X counts the number
of Bernoulli trials underlying the binomial experiment that
produce a successful outcome. If the successful trials could
only be selected in a subset Y ⊆ N , then all the (independent)
trials in N\Y lead to a failure, which has a probability q|N\Y|.

C. Hypergeometric distribution
If X has a hypergeometric distribution:

f(x) =

(
n

x

)(
N − n

k − x

)

(
N

k

)

we can easily compute the γ-transform:

γ(y) =

n∑
x=0

(
y

x

)(
N − n

k − x

)

(
N

k

)

=

(
y + N − n

k

)

(
N

k

)

owing to Vandermonde’s convolution formula.
By applying Corollary 1 we obtain:

E[Xr] = nr

r∑

i=0

(−1)i

(
r

i

)(
N − i

k

)

(
N

k

)

= nr

(
N − r

N − k

)

(
N

k

) = r!

(
n

r

)(
k

r

)

(
N

r

)

which is the value usually found in the literature.
Notice how also in this case the γ-transform could be

directly derived from its physical meaning, as X counts the
number of successful trials in a sample of size k extracted
(without replacement) from a population N of N trials, n
of which are successful. If the successful trials could only
be selected in a subset of N with size y, then γ(y) can
be computed as the probability that the sample is actually
extracted, not from a set of N − n failures and n successes,
but from a set of N − n failures and y successes.

D. Beta-binomial distribution
If X is a random variable with beta-binomial distribution:

f(x) =
(

n

x

)
B(x + α, n + β − x)

B(α, β)
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we can compute the γ-transform of the density function as
follows:

γ(y) =
1

B(α, β)

n∑
x=0

(
y

x

)
Γ(x + α)Γ(n + β − x)

Γ(n + α + β)

=
B(α, n + β − y)

B(α, β)
The summation above (and also the one in the next paragraph)
is a hypergeometric which can be evaluated as a Vander-
monde’s convolution [17].

The factorial moments of X can be computed as:

E[Xr] = nr Γ(α + β)
Γ(β)

r∑

i=0

(−1)i

(
r

i

)
Γ(β + i)

Γ(α + β + i)

= nr B(α + r, β)
B(α, β)

V. APPLICATIONS

The utility of the γ-transform approach lies in the fact
that some estimation problems can be described by means
of complex distributions which do indeed have a simple γ-
transform. Not only are the moments easy to compute from
the γ-transform in these cases, but also the γ-transform can
be directly and easily derived from the nature of the problem.
In particular, expressing the γ-transform from its physical
meaning, results particularly simple when the random variable
X represents a count of trials with a successful outcome and
the order in which successes occur is irrelevant (as seen in
the previous section for the Binomial and hypergeometric dis-
tributions). This class of problems includes several modelling
and estimation problems relevant for performance evaluation of
information retrieval and database management systems, which
are briefly referenced and analyzed in this Section.

In such cases, since γ(y) is a probability, it can be noticed
that it could also be expressed as:

γ(y) =
ψ(y)
ψ(n)

(17)

where ψ(y) represents the number of ways in which the
experiment considered could be effected by selecting the
successes only in a subset of y trials.

In general, if the experiment considered is composed of
m independent sub-experiments, γ(y) can conveniently be
expressed as:

γ(y) =
m∏

k=1

γk(y) (18)

where γk(y) is the probability that the k-th sub-experiment
be effected by selecting the successes only in a subset of y
trials (which is also independent of k if the sub-experiments
are indistinguishable).

When both assumptions hold (i.e., the underlying experi-
ment is composed of independent sub-experiments and sub-
experiments can be modelled as counting of trials), Eq. (17)
and (18) can be combined yielding:

γ(y) =
m∏

k=1

ψk(y)
ψk(n)

(19)

with an obvious meaning of ψk(·).

A. Set union problem

Let N be a set with cardinality n, let Sk (1 ≤ k ≤ m)
be a random subset of N with cardinality sk, and X the
random variable denoting the cardinality of the union set
U =

⋃m
k=1 Sk.

The set union problem corresponds to the execution of
the experiment schematized in Fig. 1, where the k-th sub-
experiment effects a sampling of sk objects from N and
X counts the number of distinct objects globally selected.
Sampling is without replacement within each sub-experiment
and with replacement between different sub-experiments.

Considering the inclusion of an element of N in U to be a
successful trial, the selections of the subsets S1, . . . ,Sm can
be regarded as mutually independent sub-experiments. The γ-
transform of the probability density function of X can be
expressed according to Eq. (19), since ψk(y) =

(
y
sk

)
is the

number of ways in which the elements of Sk can be selected
only in a subset of N with cardinality y, yielding:

γ(y) =
m∏

k=1

(
y

sk

)

(
n

sk

)

Therefore, the probability density function of X is:

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

) m∏

k=1

(
x− j

sk

)

(
n

sk

) (20)

By means of Corollary 1, we can easily derive the expected
value and the variance of X as:

E[X] = n

[
1−

m∏

k=1

(
1− sk

n

)]
(21)

σ2
X = n2

[
m∏

k=1

(
1− sk

n

) (
1− sk

n− 1

)
−

m∏

k=1

(
1− sk

n

)2
]

+

n

[
m∏

k=1

(
1− sk

n

)
−

m∏

k=1

(
1− sk

n

) (
1− sk

n− 1

)]
(22)

Set union problems of interest for computer science are
numerous. For instance, X can be regarded as the number
of “1” bits in a binary word of n bits resulting from the
inclusive or of m words, where sk is the number of “1”
bits in the k-th operand word. Thus, the set union problem
is equivalent to the estimation of the signature weight as
generated by the superimposed coding technique adopted in
“multiple” m signature files [1]. The estimation is needed
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1 2 3 4 5 n6 7 8 9 .......

S ubexp. 1

1 2 3 s1....

S ubexp. m

1

2 3 sm....

....

.......x y n-1.......... .......

Fig. 1. The “set union problem” experiment

for performance evaluation of such organizations used for
information retrieval applications. The equivalence of (20) with
the density function published in [1] was shown in [16]. It was
also noticed that the method sketched in [1] and developed in
[21] through Markov chains and heavy matrix manipulations
leads to a slightly less handy formula than (20). Moreover,
as far as we know, no other authors derived a closed formula
like Eq. (22) for the evaluation of the variance of X , which
is indeed necessary, for instance, for an accurate evaluation
of the false drop probability as we showed in [16]. The
set union problem has been also studied in [2, Sec. 3.1.2]
to derive the statistics for the maintenance of a distributed
document classifier: considering that the size of the intersection
between two subsets follows a hypergeometric distribution, an
iterative formula (with a subset added to the union at each
iteration) has been proposed for the incremental estimation of
the union size. Although no closed formula has been provided,
the resulting expected value agrees with (21). No expression
for the probability density function or higher moments has
been derived in that study.

An interesting case also arises when sk = s for each k (the
sub-experiments are indistinguishable), and X represents the
number of “1” bits in the more “classical” superimposed codes
[23] adopted for information retrieval with signature files [9].
In such a case, Equations (20)–(22) reduce to:

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

)



(
x− j

s

)

(
n

s

)




m

(23)

E[X] = n
[
1−

(
1− s

n

)m]
(24)

σ2
X = n

(
1− s

n

)m

·
[
1− (n− s)m

nm−1
+

(n− s− 1)m

(n− 1)m−1

]
(25)

The density function (23) and the expected value (24) agree
with those presented in [23].

Moreover, if s = 1 then X represents the number of distinct
objects selected in sampling with replacement m objects from
a population of n. Equations (23)–(25) become:

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

)(
x− j

n

)m

(26)

E[X] = n

[
1−

(
1− 1

n

)m]
(27)

σ2
X = n

(
1− 1

n

)m

·
[
1− (n− 1)m

nm−1
+

(n− 2)m

(n− 1)m−1

]
(28)

For example, X represents the number of blocks accessed in
a file (with a total number of n blocks) during the retrieval
of m records that are not necessarily distinct, under the total
uniformity [15] assumption (i.e., each record has the same
probability to be selected and blocks contain the same number
of records). The estimation of such value is necessary for cost-
based query optimization [19]and database physical design
[10]. The expected value (27) agrees with the formula of
Cárdenas [4]. For an expression of the underlying density
function see, for instance, [5], [13]. The variance (28), which
we derived via the γ-transform approach for the first time in
[14], agrees with the value computed (for a number of empty
urns equivalent to non selected blocks) in [8] using a bivariate
generating function approach (see Appendix E).

A comparison of the γ-transform approach with alterna-
tive methods (namely, combinatorial calculus, the principle
of inclusion and exclusion, generating functions and Markov
chains) in the application to this simple problem can be found
in the Appendix. Such a comparison highlights the valuability
of the new approach from a practical point of view, as it
saves heavy computations which are otherwise needed for the
evaluation of the probability density function and of higher-
order moments.

B. Group inclusion problem

An even more general problem with important applications
to database management and design is described in the fol-
lowing. Let N be a set with cardinality N composed of n
groups of objects, each of size g (namely, N = g n). We
now define X as the number of distinct groups represented
by the elements included in the union U =

⋃m
k=1 Sk, where

each Sk is a random subset of N with cardinality sk. From
another point of view, X is the number of distinct elements in
the union of random subsets of a multiset in which all the n
distinct objects appear g times.

The group inclusion problem corresponds to the execution
of the experiment schematized in Fig. 2. Sampling of objects
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1 2 3 4 5 N6 7 8 9 ....... 

S ubexp. 1

1 2 3 s1....

S ubexp. m

1

2 3 sm....

....

x y N -1.......... ....... N -2N -3

G roup 1 (g=4) G roup 2 G roup n

Fig. 2. The “group inclusion problem” experiment

fromN is effected in the same way as in the set union problem,
but X counts the number of distinct groups from which objects
are globally selected.

For example, X represents the number of blocks accessed in
a file (with a total number of n blocks) during the execution of
a batch reading, composed of m independent queries, the k-th
thereof retrieves sk distinct records, under the total uniformity
assumption. Such estimation is necessary to build accurate
access cost models to be used for multi-query optimization
[18], [20].

In this case, Eq. (19) can still be used, with ψk(y) =
(
g y
sk

)
,

that counts the number of ways the sk objects can be selected
from y groups only, yielding:

γ(y) =
m∏

k=1

(
g y

sk

)

(
N

sk

)

and, thus,

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

) m∏

k=1

(
g(x− j)

sk

)

(
N

sk

) (29)

E[X] = n


1−

m∏

k=1

(
N − g

sk

)

(
N

sk

)


 (30)

σ2
X = n2




m∏

k=1

(
N − 2g

sk

)

(
N

sk

) −
m∏

k=1

(
N − g

sk

)2

(
N

sk

)2


 +

n




m∏

k=1

(
N − g

sk

)

(
N

sk

) −
m∏

k=1

(
N − 2g

sk

)

(
N

sk

)


 (31)

To the best of our knowledge, no estimation formulae have
been presented before the introduction of the γ-transform
approach for the probabilistic characterization of this problem.

An also interesting case takes place when m = 1, that is a
single query is considered and, thus, X represents the number

of blocks accessed during the retrieval of s1 = s distinct
records (n is the total number of blocks, g is the number of
records per block and, thus, g n = N is the total number of
records). Equations (29)–(31) become:

f(x) =
(

n

x

) x∑

j=0

(−1)j

(
x

j

)
(

g(x− j)
s

)

(
g n

s

) (32)

E[X] = n


1−

(
N − g

s

)

(
N

s

)


 (33)

σ2
X = n2




(
N − 2g

s

)

(
N

s

) −

(
N − g

s

)2

(
N

s

)2


 +

n




(
N − g

s

)

(
N

s

) −

(
N − 2g

s

)

(
N

s

)


 (34)

The expected value (33) agrees with the formula of Yao [24].
Derivations of the distribution (32) can be found, for instance,
in [3], [5], [12], [13]. The variance (34), which we derived via
the γ-transform approach for the first time in [14], agrees with
the value computed in [12] by means of a bivariate generating
function approach (see Appendix E).

C. Yet another cell visit problem
Let us finally consider another application that can effec-

tively be described in terms of the γ-transform. Assume we
have N objects with D distinct types distributed into n cells,
with the constraint that each cell contains representatives of
exactly d distinct object types (N ≥ d n). Then consider m
sub-experiments, in the k-th of which all the cells containing
at least one representative of sk out of D distinct object types
are visited (e.g., to retrieve all the representatives of that type).
If Sk is the set of cells visited in the k-th sub-experiment, then
we define X as the random variable counting the number of
distinct cells globally visited in the whole experiment (i.e.,
equal to the cardinality of the union set

⋃m
k=1 Sk).
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Fig. 3. The “yet another cell visit problem” experiment

This formalization corresponds to the execution of the
experiment schematized in Fig. 3, where object types are
represented with different shapes. Notice that the constraint
on cell occupancy is that each cell contains exactly the same
number of object types, possibly with a different number of
representatives (a different number of objects could even be
contained in each cell). In sub-experiment 1, the first object
type selected is square (objects 2, 4, N-3, N-1, N), the second
is round (objects 1, 3, 5, 6), . . . and the s1-th is hexagon
(objects 9, y) and so on. X counts the number of distinct cells
from which objects are globally selected.

For example, X represents the number of blocks accessed
in a file (composed of n blocks) during the execution of a
batch reading, composed of m independent queries, the k-
th thereof retrieves all the records matching sk distinct key
values in the presence of data duplication and of uniform
clustering [15] of the data (i.e., each value has the same
probability to be selected and blocks contain the same number
of distinct values). The parameter d represents the number of
distinct key values contained in any block under the uniform
clustering assumption. This problem can be described as an
experiment in which trials correspond to cells, and successes
to cells to be visited. Therefore, in order to express the γ-
transform, we can use Eq. (18): for the k-th sub-experiment,
γk(y) represents represents the probability that n − y of the
cells have been excluded a priori from the result. Once these
(indistinguishable) cells have been fixed, each of them has the
same probability of being excluded from the result, which is
independent on y and can be evaluated as:

γk =

(
D − d

sk

)

(
D

sk

) (35)

if the sk object types are distinct, and:

γk =
(

1− d

D

)sk

(36)

if they are not. In fact, (35) and (36) represent the probability
that the d objects types contained in the cell are not involved

in the sub-experiment. In both cases, the γ-transform of the
density function has the form:

γ(y) =
m∏

k=1

γn−y
k

In particular, if the sk objects selected in a sub-experiment
are distinct, the probability density function for our cell visit
problem from (35) becomes:

f(x)

=
(

n

x

) x∑

j=0

(−1)j

(
x

j

) m∏

k=1




(
D − d

sk

)

(
D

sk

)




n−x+j

(37)

The expected value and variance of X can then be computed
as:

E[X] = n


1−

m∏

k=1

(
D − d

sk

)

(
D

sk

)


 (38)

σ2
X = n

m∏

k=1

(
D − d

sk

)

(
D

sk

)


1−

m∏

k=1

(
D − d

sk

)

(
D

sk

)


 (39)

Else, if the sk objects are not distinct, the probability density
function from (36) becomes:

f(x)

=
(

n

x

) x∑

j=0

(−1)j

(
x

j

) m∏

k=1

(
1− d

D

)sk(n−x+j)

(40)

The expected value and variance of X can then be computed
as:

E[X] = n

[
1−

m∏

k=1

(
1− d

D

)sk
]

(41)

σ2
X = n

m∏

k=1

(
1− d

D

)sk

·
[
1−

m∏

k=1

(
1− d

D

)sk
]

(42)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 631



Such estimation formulae are needed to build accurate access
cost models to be used for multi-query optimization in the
presence of uniform clustering of the data (by the way, notice
that a large fraction of the data columns in a relational database
fits the uniform clustering model). Notice that none of these
results have been derived before and they would be quite hard
to derive without the help of the γ-transform theory.

An also interesting case is when a single sub-experiment is
considered (m = 1). Hence, X represents the number of blocks
accessed in a file (composed of n blocks) during the retrieval of
s1 = s distinct key values in the presence of data duplication
and of uniform clustering of the data, whose estimation is
needed for cost-based single query optimization [6], [15] and
database physical design [7].

In case the s data values are distinct, we can use equations
(37)–(39) which reduce to:

f(x)

=
(

n

x

) x∑

j=0

(−1)j

(
x

j

)



(
D − d

s

)

(
D

s

)




n−x+j

=
(

n

x

)

1−

(
D − d

s

)

(
D

s

)




x 


(
D − d

s

)

(
D

s

)




n−x

(43)

and:

E[X] = n


1−

(
D − d

m

)

(
D

s

)


 (44)

σ2
X = n

(
D − d

s

)

(
D

s

)


1−

(
D − d

s

)

(
D

s

)


 (45)

In case the s data values are not distinct, from equations
(40)–(42) we can derive:

f(x)

=
(

n

x

) x∑

j=0

(−1)j

(
x

j

)(
1− d

D

)s(n−x+j)

=
(

n

x

) [
1−

(
1− d

D

)s]x (
1− d

D

)s(n−x)

(46)

and:

E[X] = n

[
1−

(
1− d

D

)s]
(47)

σ2
X = n

(
1− d

D

)s [
1−

(
1− d

D

)s]
(48)

In both cases, which can also be regarded as particular cases
of binomial distributions, the expected values agree with those
derived in [6], [15]. Even for these simpler problems, to the
best of our knowledge, no derivation of the probability density
function and of σ2

X has been done before.

VI. CONCLUSION

In this paper, we have put forward the claim that the classical
approach for the study of a discrete random variable based
on the probability generating function could not be the most
appropriate when the distribution of the random variable has
a finite support. In such a case, in order to better suit the
finiteness property, we proposed an alternative approach based
on the introduction of a new transform, named γ-transform,
of the probability density function. We have shown how,
substituting an approach based on Taylor expansions with an
approach based on finite Newton series, the probability density
function and all the factorial moments of a finite random
variable can easily be computed from the γ-transform. We have
also shown how the probability generating function approach
can be obtained back as a limit of the γ-transform theory when
the domain of the discrete random variable becomes unlimited,
which completes the support of our claim.

Moreover, we also showed how the expression of the γ-
transform can be derived in an easy way thanks to its physical
meaning for several combinatorial problems. Several exam-
ples of its useful application to modelling problems relevant
for performance evaluation and physical design of database
management or information retrieval systems were provided,
showing how the γ-transform approach looks really attractive
in such domains. All the ready-to-use formulae presented in
this work are general and simple to handle. They hide the most
difficult computations involved in the probabilistic description
and characterization of a problem, which have been embedded
in their derivations.

APPENDIX

In this Appendix, a comparison of the proposed approach
with alternative methods can be appreciated. This aims at an
evaluation of the γ-transform approach from a practical point
of view. Let us make use of one of the most simple problems
in the family we considered in Section V: the sampling with
replacement of m objects out of a population of n (e.g., set
union of random subsets each containing only one element).
Notice that such a problem can be considered a particular case,
with s1 = s2 = · · · = sm = 1, either of the set union problem,
or of the group inclusion problem, or of the cell visit problem
(with D = N and d = N/n) studied in Sec. V.

The only simple thing to determine for this problem is the
expected value (27) of X , since (1 − 1/n)m represents the
probability that one of the n objects is not included in the
result of the m selections [4]. The evaluation of the variance
or of the complete distribution (26) of X cannot be effected in
an elementary way. The main methods to be used are exposed
in the following and compared with the γ-transform approach.

A. Combinatorial calculus

The density function can be directly computed as the ratio
between the counts of favorable and total events NF /NT . In
this case we simply have NT = nm which represents the
number of ways of putting m different objects into n different
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cells (more objects can fit into the same cell). The number NF

is not as simple: it represents the number of ways of putting
m different objects into n different cells so that exactly x cells
are occupied. Skilled readers can evaluate this number as [22,
Ch. 5, p. 92]:

NF = nx

{
m

x

}
(49)

and derive:

Pr[X = x] =
nx

{
m

x

}

nm =

(
n

x

)

nm x!
{

m

x

}

=

(
n

x

)

nm

x∑

j=0

(−1)x−j

(
x

j

)
jm (50)

where (6.19) of [17, Sec. 6.1] has been used in the last
step. Clearly, (50) equals the density function (26). The direct
determination of the moments from (50) is not straightforward,
since it requires computations equivalent to those involved in
the proof of Theorem 1. Explicit passages, without resorting
to the notion of finite difference and exploiting its properties,
are as shown in [14, Lemma1, Lemma 2 and Th. 1].

B. Principle of inclusion and exclusion

The density function can be evaluated by means of the
principle of inclusion and exclusion. To this end, computations
similar to those leading to the derivation of Eq. (15) presented
in Sec. III-B must be effected [14, Th. 4]. Once the distribution
has been evaluated, the determination of the moments has to
be done as in the previous case.

C. Markov chain

The repeated selection of objects can be viewed as a Markov
process, where each step corresponds to the selection with
replacement of one object. Being X(r) the random variable
representing the number of distinct objects selected after the
first r choices, the one-step transition probabilities can be
computed as:

Pr
[
X(r) = k|X(r−1) = i

]

=

{
i/n if k = i
1− i/n if k = i + 1
0 otherwise

This is the generic entry Pik (with 0 ≤ i, k ≤ n) of the
probability matrix P = P (1) which is the same at every step
of the chain. It can be noticed that P is triangular (upper
bidiagonal indeed), thus its diagonal element Pii = i/n is
also its eigenvalue λi. If E is a matrix whose columns are
distinct eigenvectors of P , then we can write P = EΛE−1,
where Λ = diag(λ0, . . . , λn). This similarity transformation
allows the m-step probability matrix to be rewritten for the
whole process as:

PT = (EΛE−1)m = EΛmE−1

The k-th eigenvector ek can be computed via the equation
Pek = λkek. Imposing that (ek)k = 1, the simultaneous
equations yield the solution:

Eik = (ek)i =
(

n− i

n− k

)

After some algebraic manipulations, matrix E can be inverted
providing:

(E−1)ik = (−1)k−i

(
n− i

n− k

)

Therefore, being Λik = i/n δik and (Λm)ik = (i/n)m δik,
where δik is a Kronecker’s delta, we can finally evaluate the
probability matrix for the complete Markov chain as follows:

(EΛm)ik

=
n∑

j=0

(
n− i

n− j

)(
k

n

)m

δjk

=
(

n− i

n− k

)(
k

n

)m

(Pm)ik = (EΛmE−1)ik

=
n∑

j=0

(
n− i

n− j

)(
j

n

)m

(−1)k−j

(
n− j

n− k

)

=
(

n− i

n− k

) n∑

j=0

(
k − i

k − j

)
(−1)k−j

(
j

n

)m

Hence, the desired density function can be finally determined1

as:

Pr[X = x]
= Pr[X(m) = x|X(0) = 0] = (Pm)0x

=
(

n

n− x

) n∑

j=0

(
x

x− j

)
(−1)x−j

(
j

n

)m

which is equivalent to (26) (in order to show it, the proof in
[16, Sec. 3] can easily be adapted). Yet the moments have to be
computed from the density function as in the previous cases.

D. Generating function

We can compute the density function by means of a gen-
erating function approach. The enumerator for the m choices
can easily be written as the formal polynomial:

P (x̄) =
(x1

n
+ · · ·+ xn

n

)m

(51)

1This is the method used in [21] to determine the probability distribution
of the signature weight in “multiple” m signature files. However, it can be
applied to every experiment that can be decomposed into m independent sub-
experiments and, thus, Eq. (18) holds. In this general case, it can be shown
that the transition probabilities for the r-th step are given by:

(Pr)ik =
(n− i

k − i

) k−i∑
j=0

(k − i

j

)
(−1)jγr(k − j)

This can be shown by directly computing Pr[X(r) = k|X(r−1) = i] using
the principle of inclusion and exclusion as outlined in the previous section.
Moreover, Pr = EΛrE−1, where E is still the eigenvector matrix of the
example and Λr = diag(γr(0), . . . , γr(n)).
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where the variable xi represent the choice of the i-th object
and 1/n is the constant probability for the choice of an object.
The probability generating function G(z) for the cardinality of
the result can be computed as:

G(z) = Θxj
1→z · · ·Θxj

f
→zP (x̄)

where the operator Θxj
i
→z entails the substitution of the

variable z for the term xj
i . It can be shown [13, Lemma 1]

that G(z) can also be computed as:

G(z) =
n∑

j=0

Gj zj(1− z)n−j (52)

where the term Gj is obtained by summing over every j-
combination {i1, . . . , ij} of the indexes {1, . . . , n} the value
obtained from P (x̄) by putting xi = 1 if index i is in the
j-combination, or xi = 0 if is not:

Gj =
∑

1≤i1<···<ij≤n


 ∑

i∈{i1,...,ij}

1
n




m

=
(

n

j

)(
j

n

)m

and, thus, (52) results:

G(z) =
n∑

j=0

(
n

j

)(
j

n

)m

zj(1− z)n−j

Hence, the probability density function of X can be evaluated
as:

Pr[X = x] = [zx]G(z)

which can be done as shown in Sec. III-C. The determination
of the moments of X requires the evaluation of the derivatives
of G(·), owing to Eq. (3). For instance, this yields:

E[X1] = nGn −Gn−1

E[X2] = n(n− 1)Gn − 2(n− 1) Gn−1 + 2 Gn−2

The higher the moment, the more its evaluation is complicated:
the dependence of the moments on coefficients Gj looks less
simple than their dependence (12) on the γ-transform values
γ(y). On the other hand, we can use our γ-transform theory
to easily explicit such a dependence as follows. Owing to the
relationship between G(z) and γ(y) shown in Sec. III-C, from
the comparison between (16) and (52) we can derive the γ-
transform as:

γ(y) =
Gy(
n

y

) (53)

By substituting (53) in (12) we eventually obtain:

E[Xr] = nr
r∑

l=0

(−1)l

(
r

l

)

(
n

l

)Gn−l

= r!
r∑

l=0

(−1)l

(
n− l

r − l

)
Gn−l (54)

which holds for any distribution with the probability generating
function put in the form (52).

E. Bivariate generating function

An approach based on a bivariate generating function (BGF)
[11, Sec. III.2], enumerating the set of possible allocations of
objects into cells, can suitably be adopted to this problem.
Using the variable z to “mark” the (undistinguishable) objects
and the variable y to “mark” the (distinguishable) non-empty
cells, we can use a BGF exponential with respect to z and
ordinary with respect to x as follows:

Φ(z, y) = (1 + y(ez − 1))n (55)

Then, the probability density function and the factorial mo-
ments can then be computed from the BGF as follows:

Pr[X = x] =
[zmyx]Φ(z, y)
[zm]Φ(z, 1)

(56)

E[Xr] =

[zm]
∂rΦ(z, y)

∂yr

∣∣∣∣
y=1

[zm]Φ(z, 1)
(57)

leading, for instance, to:

E[X] =

[zm]
∂Φ(z, y)

∂y

∣∣∣∣
y=1

[zm]Φ(z, 1)
(58)

σ2
X =

[zm]
∂2Φ(z, y)

∂y2

∣∣∣∣
y=1

[zm]Φ(z, 1)
+ E[X]− E[X]2 (59)

Although this method is as general as the γ-transform ap-
proach, it is apparently more complex to apply even to a
simple problem like that considered in this Appendix. First, the
abstraction required to correctly write the underlying BGF (55)
is more sophisticated than the derivation of the γ-transform
based on its physical interpretation. Second, the evaluation of
the derivatives of Φ and the rewritings required to evidence
the coefficients of zm and yx are more complex operations
than the application of the formulae made available by the
γ-transform approach, as recalled in the section that follows.

F. γ-transform

After identifying the problem as a (finite) counting of
trials, we can easily follow the γ-transform approach. We
can formalize the problem as composed of m independent
assignments of objects to cells, where ψk(y) = y trivially
counts the number of ways to select the cell for the assignment
of an object, assuming that only y cells are available. Hence,
(19) yields γ(y) = (y/n)m. Expressing the probability density
function is then straightforward using (6). The determination of
the moments is also straightforward, since (12) can be used.
Ready-to-use formulae (13)–(14) can also be employed for
E[X] and σ2

X .
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